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Part I: Infinite series

Section 3.7 gives a brief introduction to infinite series, which is one of the central topics and
will be discussed further in MATH2060. However, this part is not so important in MATH2050 and
I will summarize all the important things you need to know for now.

The very first thing you should make clear is that an infinite series is closely related to a

sequence. Only based on a given sequence (xn) can we define a series S = (sk) where sk =
k∑

n=1

xn.

But you should distinguish a sequence and a series, which have the same meaning in daily use. A
series can be seen as a special kind of sequence, where the terms are obtained by adding terms in
a sequence. The second place you should pay special attention to is that where the series starts,
i.e., the first term of the series.

We use the same notation S =
∑

xn to denote both the series generated by the sequence (xn)

and the value limS (provided the series is convergent).∑
xn is said to be convergent if the sequence (sk) converges. Since a series is defined by adding

terms continuously, we have the n-th term test:

If the series
∑

xn converges, then lim
n→∞

xn = 0.

Notice that this is only a necessary condition and is usually used to show the divergence of a
series. For a series to be convergent, we would not only expect xn to tend to 0, but also require
that the speed of converging to 0 is “sufficiently fast”.

Unfortunately, there is NO clear demarcation line between the convergent and divergent series.
So people developed many criteria to help judge the convergence. Also, you need to know some
special series that can be used for the purpose of comparison.

1. Two special series

• The geometric series
∞∑
n=0

rn is convergent if and only if |r| < 1.

• The p-series
∞∑
n=1

1

np
is convergent if and only if p > 1. And the harmonic series

∞∑
n=1

1

n

is divergent.

2. Convergence criteria for series of positive terms

• Direct Comparison Test. Let (xn) and (yn) be two real sequences and suppose for
some K ∈ N and constant M > 0 we have

xn ≤Myn, ∀n ≥ K.
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Then
∑

yn converges =⇒
∑

xn converges,
∑

xn diverges =⇒
∑

yn diverges.

• Limit Comparison Test. Suppose r = lim
n→∞

xn

yn
exists.

If r = 0, then
∑

yn converges =⇒
∑

xn converges,
∑

xn diverges =⇒
∑

yn diverges.

If r > 0, then
∑

yn converges ⇐⇒
∑

xn converges.

Remark: We usually choose geometric series, p-series as our comparison series to judge
the convergence of other series.

• Cauchy criterion for series. The series
∑

xn converges if and only if for every ε > 0,
there exists M(ε) ∈ N such that whenever m > n ≥M(ε), it holds that

|sm − sn| = |xn+1 + xn+2 + · · ·+ xm| < ε.

• Ratio test or D’Alembert’s criterion. Suppose L = lim
n→∞

xn+1

xn

exists, the ratio test

states that

– if 0 ≤ L < 1, then the series
∑

xn converges,

– if L > 1, then the series
∑

xn diverges,

– if L = 1, then ratio test is inconclusive.

• Root test or Cauchy’s criterion. Suppose C = lim
n→∞

n
√
xn exists, the root test states

that

– if 0 ≤ C < 1, then the series
∑

xn converges,

– if C > 1, then the series
∑

xn diverges,

– if C = 1, then root test is inconclusive.

Remark: Ratio test and root test are in fact comparison tests where the comparison
series is the geometric series.

• Cauchy’s condensation test.

Refer to Ex 3.7.15 in the textbook.

• Integral test.

Will be learned in MATH2060.

3. (Generalization of 3.7.6(f)) Convergence criterion for alternating series

A series of the form
∞∑
n=0

(−1)nxn = x0 − x1 + x2 − x3 + · · ·

is called an alternating series where either all xn are positive or all xn are negative.

The Leibniz’s test says: if |xn| decreases monotonically and lim
n→∞

xn = 0, then the alternat-

ing series converges. (In essence Leibniz’s test is an application of MCT)

4. Convergence criterion for general series

• Absolute convergence. If
∑
|xn| is convergent, then so is

∑
xn.

• Abel’s test and Dirichlet’s test. Will be learned in MATH2060.
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Part II: other problems.

1. (Ex 3.7.9)

(a) Show that the series
∞∑
n=1

cosn is divergent.

(b) Show that the series
∞∑
n=1

cosn

n2
is convergent.

Solution:

(a) Since (cosn) does no converge to 0 (refer to Example 3.4.6 (c)), the series
∞∑
n=1

cosn

is divergent from the n-th term test.

(b) First notice that
∣∣∣cosn

n2

∣∣∣ ≤ 1

n2
and

∞∑
n=1

1

n2
is p-series (p = 2 > 1) and hence convergent.

By Comparison Test we know
∞∑
n=1

∣∣∣cosn

n2

∣∣∣ is convergent. Then Absolute Convergence

implies that
∞∑
n=1

cosn

n2
is also convergent.

2. (Ex 3.7.11-12) Suppose
∑

an with an > 0 is convergent, show that
∑

a2n is also convergent.
Give a counterexample to show that the converse is not true.

Solution: By the n-th term test we know lim
n→∞

an = 0 and thus (an) is bounded, i.e., there

exists some M > 0 such that 0 < an < M,∀n.

Therefore, 0 < a2n < Man and we obtain the convergence of
∑

a2n from the Comparison Test.

A counterexample is an =
1

n
.

3. (Ex 3.7.13) Suppose
∑

an with an > 0 is convergent, show that
∑√

anan+1 is also conver-
gent. Give a counterexample to show that the converse is not true.

Solution: From the AM-GM inequality we have
√
anan+1 ≤

an + an+1

2
. Then by the Com-

parison Test we know that
∑√

anan+1 is convergent.

A counterexample is given by a2n−1 = 1, a2n =
1

n4
, n = 1, 2, 3, · · · .

4. (Ex 3.7.15 Cauchy Condensation Test). Let
∞∑
n=1

an be such that (an) is a decreasing

sequence of strictly positive numbers and sn denotes the nth partial sum, show that

a1 + 2a2 + · · ·+ 2na2n

2
≤ s2n ≤ a1 + 2a2 + · · ·+ 2n−1a2n−1 + a2n .

Use these inequalities to show that
∞∑
n=1

an converges if and only if
∞∑
n=1

2na2n converges.
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Proof: Since (an) is decreasing, we have

s2n = a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + · · ·+ (a2n−1 + · · ·+ a2n−1) + a2n

≤ a1 + 2a2 + 4a4 + · · ·+ 2n−1a2n−1 + a2n

≤ a1 + 2a2 + 4a4 + · · ·+ 2n−1a2n−1 + 2na2n ,

s2n = a1 + a2 + (a3 + a4) + (a5 + a6 + a7 + a8) + · · ·+ (a2n−1+1 + · · ·+ a2n)

≥ a1 + a2 + 2a4 + · · ·+ 2n−1a2n

≥ a1 + 2a2 + · · ·+ 2na2n

2
.

By Comparison Test, the conclusion follows. (Please supplement all the details yourself)

Part III: Additional exercises.

1. (Ex 3.7.18) Show that if c > 1, then the following series are convergent:

(a)
∞∑
n=2

1

n(lnn)c
,

(b)
∞∑
n=3

1

n lnn(ln lnn)c
. (Hint: use (a) and Limit Comparison test)

Solution:

(a) Using the Cauchy Condensation Test where an =
1

n(lnn)c
, we have

2na2n = 2n · 1

2n(ln 2n)c
=

1

(n ln 2)c
=

1

(ln 2)c
· 1

nc
.

Since
∑ 1

nc
is a p-series where p = c > 1 and consequently convergent, we know that

∞∑
n=2

1

n(lnn)c
is also convergent.

(b) This time

2na2n = 2n · 1

2n ln 2n(ln ln 2n)c
=

1

n ln 2[ln(n ln 2)]c
=

1

n ln 2(lnn + ln ln 2)c
.

Use the Limit Comparison Test and we have

lim
n→∞

1
n ln 2(lnn+ln ln 2)c

1
n(lnn)c

= lim
n→∞

1

ln 2

(
lnn

lnn + ln ln 2

)c

=
1

ln 2

which is positive. Therefore,
∑ 1

n ln 2(lnn + ln ln 2)c
and

∞∑
n=2

1

n(lnn)c
are simultane-

ously convergent or divergent.

From the result in (a) we know that
∑ 1

n ln 2(lnn + ln ln 2)c
is convergent and the

Cauchy Condensation Test implies that
∞∑
n=3

1

n lnn(ln lnn)c
is also convergent.
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2. Suppose both the series
∞∑
n=1

xn and
∞∑
n=1

yn are convergent. Show that

(a)
∞∑
n=1

xnyn is convergent,

(b)
∞∑
n=1

xn

n
is convergent.

Proof: (a) By Ex 3.7.11 we have that both
∑

x2
n and

∑
y2n are convergent. Then from the

Comparison Test,
∑

xnyn is convergent since xnyn ≤
x2
n + y2n

2
.

(b)
xn

n
≤ x2

n

2
+

1

2n2
by AM-GM inequality and both of

∞∑
n=1

x2
n

2
,

∞∑
n=1

1

2n2
are convergent.


